Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 12(1): 5148, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1376197

ABSTRACT

Coronavirus infection in humans is usually associated to respiratory tract illnesses, ranging in severity from mild to life-threatening respiratory failure. The aryl hydrocarbon receptor (AHR) was recently identified as a host factor for Zika and dengue viruses; AHR antagonists boost antiviral immunity, decrease viral titers and ameliorate Zika-induced pathology in vivo. Here we report that AHR is activated by infection with different coronaviruses, potentially impacting antiviral immunity and lung epithelial cells. Indeed, the analysis of single-cell RNA-seq from lung tissue detected increased expression of AHR and AHR transcriptional targets, suggesting AHR signaling activation in SARS-CoV-2-infected epithelial cells from COVID-19 patients. Moreover, we detected an association between AHR expression and viral load in SARS-CoV-2 infected patients. Finally, we found that the pharmacological inhibition of AHR suppressed the replication in vitro of one of the causative agents of the common cold, HCoV-229E, and the causative agent of the COVID-19 pandemic, SARS-CoV-2. Taken together, these findings suggest that AHR activation is a common strategy used by coronaviruses to evade antiviral immunity and promote viral replication, which may also contribute to lung pathology. Future studies should further evaluate the potential of AHR as a target for host-directed antiviral therapy.


Subject(s)
Coronavirus Infections/metabolism , Coronavirus/physiology , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Humans , Male , Receptors, Aryl Hydrocarbon/genetics , SARS-CoV-2/physiology
2.
Front Pharmacol ; 12: 673485, 2021.
Article in English | MEDLINE | ID: covidwho-1282402

ABSTRACT

Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription factors (TFs) for therapeutic targeting using approved drugs. We integrated a resource of TF-cytokine gene interactions with single-cell RNA-seq expression data from bronchoalveolar lavage fluid cells of COVID-19 patients. We found 581 significantly correlated interactions, between 95 TFs and 16 cytokines upregulated in the COVID-19 patients, that may contribute to pathogenesis of the disease. Among these, we identified 19 TFs that are targets of FDA approved drugs. We investigated the potential therapeutic effect of 10 drugs and 25 drugs combinations on inflammatory cytokine production, which revealed two drugs that inhibited cytokine production and numerous combinations that show synergistic efficacy in downregulating cytokine production. Further studies of these candidate repurposable drugs could lead to a therapeutic regimen to treat the CRS in COVID-19 patients.

3.
Res Sq ; 2020 Apr 27.
Article in English | MEDLINE | ID: covidwho-670432

ABSTRACT

Coronavirus infection is associated to life-threatening respiratory failure. The aryl hydrocarbon receptor (AHR) was recently identified as a host factor for Zika and dengue viruses; AHR antagonists decrease viral titers and ameliorate ZIKV-induced pathology in vivo. Here we report that AHR is activated during coronavirus infection, impacting anti-viral immunity and lung basal cells associated to tissue repair. Hence, AHR antagonists are candidate therapeutics for the management of coronavirus-infected patients.

SELECTION OF CITATIONS
SEARCH DETAIL